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INFINITE SERIES RELATION FROM A MODULAR
TRANSFORMATION FORMULA FOR THE

GENERALIZED EISENSTEIN SERIES

Sung-Geun Lim*

Abstract. In 1970s, B. C. Berndt proved a transformation for-
mula for a large class of functions that includes the classical Dedekind
eta function. From this formula, he evaluated several classes of infi-
nite series and found a lot of interesting infinite series identities. In
this paper, using his formula, we find new infinite series identities.

1. Introduction and preliminaries

In 1970s, B. C. Berndt [2, 3] found a lot of infinite series identities
using a modular transformation formula for the generalized Eisenstein
series. Some of his results have been stated in the Notebooks of Ra-
manujan [7] or are generalizations of formulas of Ramanujan. Recently
he suggested that one could find more new infinite series identities using
his modular transformation formula in [3]. In fact, continuing his work,
the author derived a lot of new series relation between infinite series
[4, 5, 6]. In this paper, we obtain more infinite series identities, some of
which are compared with series relations in [2, 3].

The basic notations are as follows. For a complex w, we choose the
branch of the argument for a complex w defined by −π ≤ arg w < π.
Let e(w) = e2πiw and V τ = V (τ) = aτ+b

cτ+d always denote a modular
transformation with c > 0 for every complex τ . Let r = (r1, r2) and
h = (h1, h2) denote real vectors, and the associated vectors R and H
are defined by

R = (R1, R2) = (ar1 + cr2, br1 + dr2)
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and
H = (H1,H2) = (dh1 − bh2,−ch1 + ah2).

Let λ denote the characteristic function of the integers. For a real
number x, [x] denotes the greatest integer less than or equal to x and
{x} := x− [x]. For real x, y and Re(s) > 1, let

ψ(x, y, s) :=
∑

n+y>0

e(nx)
(n + y)s

.

If x is an integer and y is not an integer, then ψ(x, y, s) = ζ(s, {y}),
where ζ(s, x) is the Hurwitz zeta-function. The function ψ(x, y, s) can be
analytically continued to the entire s-plane except for a possible simple
pole at s = 1 when x is an integer. Let H = {τ ∈ C | Im(τ) > 0}, the
upper half-plane. For τ ∈ H and an arbitrary complex numbers s, define

A(τ, s; r, h) :=
∑

m+r1>0

∑

n−h2>0

e (mh1 + ((m + r1)τ + r2)(n− h2))
(n− h2)1−s

.

Let

H(τ, s; r, h) := A(τ, s; r, h) + e (s/2)A(τ, s;−r,−h).

We now state the principal theorem for our results.

Theorem 1.1. [2]. Let Q = {τ ∈ C | Re(τ) > −d/c} and % = c{R2}
−d{R1}. Then for τ ∈ Q and all s,

(cτ + d)−sH(V τ, s; r, h) = H(τ, s; R, H)

−λ(r1)e(−r1h1)(cτ + d)−sΓ(s)(−2πi)−s (ψ(h2, r2, s) + e (s/2) ψ(−h2,−r2, s))

+λ(R1)e(−R1H1)Γ(s)(−2πi)−s (ψ(H2, R2, s) + e (−s/2) ψ(−H2,−R2, s))

+(2πi)−sL(τ, s; R, H),

where

L(τ, s;R,H)

:=
c′∑

j=1

e(−H1(j + [R1]− c)−H2([R2] + 1 + [(jd + %)/c]− d))

·
∫

C
us−1 e−(cτ+d)(j−{R1})u/c

e−(cτ+d)u − e(cH1 + dH2)
e{(jd+%)/c}u

eu − e(−H2)
du,

where C is a loop beginning at +∞, proceeding in the upper half-plane,
encircling the origin in the positive direction so that u = 0 is the only
zero of (

e−(cτ+d)u − e(cH1 + dH2)
)

(eu − e(−H2))

lying “inside” the loop, and then returning to +∞ in the lower half
plane. Here, we choose the branch of us with 0 < arg u < 2π.
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Remark 1.1. Theorem 1.1 is true for τ ∈ Q. But, after the evaluation
of L(τ, s; R, H) for an integer s, it will be valid for all τ ∈ H by analytic
continuation.

We shall use the Bernoulli polynomials Bn(x), n ≥ 0, defined by

text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
(|t| < 2π).

The n-th Bernoulli number Bn, n ≥ 0, is defined by Bn = Bn(0). Put
B̄n(x) = Bn({x}), n ≥ 0. Recall that B2n+1 = 0, n ≥ 1, and that
B2n+1 (1/2) = 0, n ≥ 0. The following formulas [1] are helpful ;

Bn(1− x) = (−1)nBn(x),

Bn

(
1
2

)
= −(1− 21−n)Bn, n ≥ 0.

We also use the Euler polynomials En(x), n ≥ 0, defined by

2ext

et + 1
=

∞∑

n=0

En(x)
tn

n!
(|t| < π).

The Euler numbers En are defined by

En := 2nEn

(
1
2

)
, n ≥ 0.

Put Ēn(x) = En({x}), n ≥ 0. Recall also that E2n+1 (1/2) = 0, n ≥ 0.

2. Infinite series identities
From now on, we let V a modular transformation corresponding to(

1 −1
c 1− c

)

for c > 0. Put r = (r1, r2/c). Then

R1 = r1 + r2, R2 = −r1 − r2 +
r2

c
.

Replacing cτ + 1− c by z, we have

V τ =
1
c
− 1

cz
, τ = 1− 1

c
+

1
c
z.

If τ ∈ Q, then Re z > 0 and z ∈ H. By Remark 1.1, we shall put
z = πi/α for a positive real number α. In this section, we consider three
cases of h = (h1, h2), i.e., h = (1/2, 1/2), (1/2, 0) and (0, 1/2). We also
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suppose that r1 and r2 are integers. In this case, λ(r1) = λ(R1) = 1. By
Theorem 1.1, we have, for any integer m and z ∈ H with Re z > 0,

zmH(V τ,−m; r, h) = H(τ,−m;R,H) + (2πi)mL(τ,−m; R, H)
+ lim

s→−m
(−2πi)−sΓ(s) (−Φ+(s, r, h) + Φ−(s,R, H)) ,(2.1)

where

Φ+(s, r, h) := e(−r1h1)z−s
(
ψ

(
h2,

r2

c
, s

)
+ e

(s

2

)
ψ

(
−h2,−r2

c
, s

))

and

Φ−(s,R, H) := e(−R1H1)
(
ψ(H2, R2, s) + e

(
−s

2

)
ψ(−H2,−R2, s)

)
.

We need the following equations to compute equation (2.1). For r1 and
r2 integers,

H(V τ, s; r, h) = e(−r1h1)
∑

n−h2>0

e(h1 + (V τ + r2/c)(n− h2))

(n− h2)1−s(1− e(h1 + V τ(n− h2)))

+eπise(−r1h1)
∑

n+h2>0

e(−h1 + (V τ − r2/c)(n + h2))

(n + h2)1−s(1− e(−h1 + V τ(n + h2)))
(2.2)

and

H(τ, s; R, H) = e(−R1H1)
∑

n−H2>0

e(H1 + (τ + R2)(n−H2))

(n−H2)1−s(1− e(H1 + τ(n−H2)))

+eπise(−R1H1)
∑

n+H2>0

e(−H1 + (τ −R2)(n + H2))

(n + H2)1−s(1− e(−H1 + τ(n + H2)))
.(2.3)

It is easy to see that, for x /∈ Z,

ψ(1/2, x, s) = (−1)[x](21−sζ(s, {x}/2)− ζ(s, {x})),
ψ(−1/2,−x, s) = (−1)[x]+1(21−sζ(s, (1− {x})/2)− ζ(s, 1− {x})).(2.4)

If x is an integer, then

ψ(±1/2,±x, s) = (−1)x(21−s − 1)ζ(s).(2.5)

For Re s < 0 and 0 < x ≤ 1([8], p. 37),

Γ(s)ζ(s, x) =
(2π)s

sin(πs)

∞∑
n=1

sin(2πnx + πs/2)
n1−s

.(2.6)

Let Ψ0(x) be the digamma function defined by

Ψ0(x) =
d

dx
Γ(x).

For brevity, we let

Z±(s, x) := ζ(s, x)± ζ(s, 1− x)(2.7)
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and let

Z±(s, x) :=
∞∑

n=0

(−1)n

(n + x)s
±

∞∑

n=0

(−1)n

(n + 1− x)s
(2.8)

for 0 < x < 1 and Re s > 0. Then Z±(s, x) can be analytically continued
to an entire function.

Theorem 2.1. Let α, β > 0 with αβ = π2. Then, for any integers
k, r2 and for any positive even integer c,

α−k
∞∑

n=0

2 cos(πr2(2n + 1)/c)

(2n + 1)2k+1(e(α−πi)(2n+1)/c + 1)

= (−1)r2(−β)−k
∞∑

n=0

2 cos(πr2(2n + 1)/c)

(2n + 1)2k+1(e(β+πi)(2n+1)/c + 1)

+
(−1)r2

4

c∑
j=1

(−1)j+[(j+r2)/c]
2k∑

`=0

E`(j/c)Ē2k−`((j + r2)/c)

`!(2k − `)!
(−πi)`+1αk−` + I1(k),

where if r2/c is not an integer, then

I1(k) :=





(−1)[r2/c]

2
Γ(−2k)((−β)k − (−1)r2αk)Z−(−2k, { r2

c
}) if k < 0,

(−1)[r2/c]+1

2

(
((−1)r2 − 1) log cot

(
π
2

{
r2
c

})
+ ((−1)r2 + 1)πi

2

)
if k = 0,

α−k
∞∑

n=0

e−πir2(2n+1)/c

(2n + 1)2k+1
+ (−1)r2+1(−β)−k

∞∑
n=0

eπir2(2n+1)/c

(2n + 1)2k+1
if k > 0,

and if r2/c is an integer, then

I1(k) :=

{
(−1)r2/c+1(1− 2−2k−1)((−β)−k − α−k)ζ(2k + 1) if k 6= 0,
(−1)r2/c

4

(
log β

α
− πi

)
if k = 0.

Proof. Let h = (1/2, 1/2) and m = 2k in (2.1). We have from (2.2)
that

H(V τ,−2k; r, h)

= (−1)r1

∞∑
n=0

e(r2(2n + 1)/(2c))

2−2k−1(2n + 1)2k+1
· −e((1− 1/z)(2n + 1)/(2c))

1 + e((1− 1/z)(2n + 1)/(2c))

+(−1)r1

∞∑
n=0

e(−r2(2n + 1)/(2c))

2−2k−1(2n + 1)2k+1
· −e((1− 1/z)(2n + 1)/(2c))

1 + e((1− 1/z)(2n + 1)/(2c))

= (−1)r1+122k+2
∞∑

n=0

cos(πr2(2n + 1)/c)

(2n + 1)2k+1(1 + e−πi(1−1/z)(2n+1)/c)
.(2.9)

Since c is even, H1 ≡ 0 (mod 1) and H2 ≡ 1/2 (mod 1). Thus it follows
from (2.3) that

H(τ,−2k; R, H) = −22k+1
∞∑

n=0

eπiR2(2n+1) + e−πiR2(2n+1)

(2n + 1)2k+1(eπi(1−z)(2n+1)/c + 1)

= (−1)r1+r2+122k+2
∞∑

n=0

cos(πr2(2n + 1)/c)

(2n + 1)2k+1(eπi(1−z)(2n+1)/c + 1)
.(2.10)
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We see that
e−zuj/c

e−zu + 1
=

1

2

∞∑
n=0

En

(
j

c

)
(−zu)n

n!
,

e{(j(1−c)+%)/c}u

eu + 1
=

1

2

∞∑
n=0

Ēn

(
j + %

c

)
un

n!
,

and
[

j(1− c) + %

c

]
= −j −

[r2

c

]
+

[
j + [R2]

c

]
.

Then, by the residue theorem,

L(τ,−2k; R, H) =
1

4

c∑
j=1

e

(
−1

2

(
[R2] + c +

[
j(1− c) + %

c

]))

·
∫

C

u−2k−1
∞∑

n=0

En

(
j

c

)
(−zu)n

n!
·
∞∑

m=0

Ēm

(
j + %

c

)
um

m!
du

=
(−1)r1+r2

2
πi

c∑
j=1

(−1)j+[(j+r2)/c]

·
2k∑

`=0

E`(j/c)

`!
· Ē2k−`((j + r2)/c)

(2k − `)!
(−z)`.(2.11)

For Re s < 0 and x /∈ Z, apply (2.4) and (2.6) to obtain that

Γ(s)
(

ψ

(
1
2
, x, s

)
+ e

(
±s

2

)
ψ

(
−1

2
,−x, s

))

= 2(±π)seπis/2
∞∑

n=0

e∓πix(2n+1)

(2n + 1)1−s
.(2.12)

In case of s = 0, using the expansions at s = 0,

21−s = 2− 2 log 2s + · · · ,

ζ(s, x) =
1
2
− x +

(
log Γ(x)− 1

2
log 2π

)
s + · · · ,

eπis = 1 + πis + · · · ,

we have, for x /∈ Z,

lim
s→0

Γ(s)
(

ψ

(
1
2
, x, s

)
+ e

(
±s

2

)
ψ

(
−1

2
,−x, s

))

= (−1)[x]

(
log cot

(π

2
{x}

)
∓ 1

2
πi

)
.(2.13)

Employing the expansion at s = 0,

Γ(s) =
1
s

+ γ + · · ·
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and using (2.5), we obtain that

lim
s→0

Γ(s)(1 + e−πis − z−s(1 + eπis)) = 2 log z − 2πi.(2.14)

Now put (2.9) – (2.14) in (2.1) and let z = πi/α. Then we prove the
theorem.

If c = 2 in Theorem 2.1, then, equating the real part and the imaginary
part, respectively, we obtain Theorem 4.7 in [3] and Proposition 4.5 in
[2].

Theorem 2.2. Let α, β > 0 with αβ = π2. Then, for any integer k,
r2 and for any positive odd integer c,

α−k
∞∑

n=0

2 cos ((2n + 1)πr2/c)

(2n + 1)2k+1(e(α−πi)(2n+1)/c + 1)

= (−1)r22−2k−1(−β)−k
∞∑

n=1

2 cos (2πnr2/c)

n2k+1(e(β+πi)2n/c + 1)

+
(−1)r2

2

c∑
j=1

(−1)j+1
2k+1∑

`=0

E`

(
j
c

)
B̄2k+1−`

(
j+r2

c

)

`!(2k + 1− `)!
(−πi)`+1αk−` + I2(k),

where if r2/c is not an integer, then

I2(k) :=





(−1)[r2/c]

2
(−β)kΓ(−2k)Z−(−2k, { r2

c
})

+ (−1)r2+1

2
αkΓ(−2k)Z+(−2k, { r2

c
}) if k < 0,

(−1)[r2/c]

2

(
log cot

(
π
2

{
r2
c

})− 1
2
πi

)
+ (−1)r2

2
log(1− e2πir2/c) if k = 0,

α−k
∞∑

n=0

e−(2n+1)πir2/c

(2n + 1)2k+1
+ (−1)r2+12−2k−1(−β)−k

∞∑
n=1

e2πinr2/c

n2k+1
if k > 0,

and if r2/c is an integer, then

I2(k) :=

{
(−1)r2+12−2k−1((−β)−k − (22k+1 − 1)α−k)ζ(2k + 1) if k 6= 0,
(−1)r2

4

(
log β

α
+ 4 log 2− πi

)
if k = 0.

Proof. Let h = (1/2, 1/2) and m = 2k in (2.1). Since c is odd,
H1 ≡ 1/2 (mod 1) and H2 ≡ 0 (mod 1). By the similar way as we
derived equation (2.10) and (2.11), we obtain that

H(τ,−2k; R, H) = (−1)r1+r2+12

∞∑
n=0

cos(2πr2n/c)

n2k+1(e2πi(1−z)n/c + 1)
(2.15)

and

L(τ,−2k; R, H) =
1

2

c∑
j=1

e

(
−1

2
(j + [R1]− c)

)

·
∫

C

u−2k−2
∞∑

n=0

En

(
j

c

)
(−zu)n

n!
·
∞∑

m=0

B̄m

(
j + r2

c

)
um

m!
du
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= (−1)r1+r2+1πi

c∑
j=1

(−1)j

·
2k+1∑

`=0

E`(j/c)

`!
· B̄2k+1−`((j + r2)/c)

(2k + 1− `)!
(−z)`.(2.16)

It is easy to see that, for 0 < x < 1,

lim
s→0

Γ(s)(ζ(s, {x}) + e−πisζ(s, 1− {x})) = − log(1− e2πi{x})(2.17)

and

lim
s→0

Γ(s)(1 + e−πis − z−s(21−s − 1)(1 + eπis))

= 2 log z + 4 log 2− 2πi.(2.18)

Apply (2.4)–(2.6), (2.15)–(2.18) to (2.1) and let z = πi/α to complete
the proof.

If c = 1 and k 6= 0 in Theorem 2.2, then Theorem 5.6 in [3] follows.

Theorem 2.3. Let α, β > 0 with αβ = π2. Then, for any integer k,
r2 and for any positive even integer c,

α−k−1/2
∞∑

n=0

2 sin ((2n + 1)πr2/c)

(2n + 1)2k+2(e(α−πi)(2n+1)/c + 1)

= (−1)r2(−β)−k−1/2
∞∑

n=0

2 sin ((2n + 1)πr2/c)

(2n + 1)2k+2(e(β+πi)(2n+1)/c + 1)

+
(−1)r2+1

4
π

c∑
j=1

(−1)j+[
j+r2

c
]
2k+1∑

`=0

E`

(
j
c

)
Ē2k+1−`

(
j+r2

c

)

`!(2k + 1− `)!
(−πi)`αk−`+1/2

+I3(k),

where if r2/c is not an integer, then

I3(k) :=





(−1)[r2/c]+k+1 1
2
Γ(−2k − 1)(βk+1/2 + (−1)r2(−α)k+1/2)

·Z+(−2k − 1, { r2
c
}) if k < −1,

(−1)[r2/c]

2

(
β−1/2 + (−1)r2(−α)−1/2

) (
Ψ0(

{
r2
c

}
) + Ψ0(1−

{
r2
c

}
)

−Ψ0(
1
2

{
r2
c

}
)−Ψ0(

1
2
− 1

2

{
r2
c

}
)− 2 log 2

)
if k = −1,

α−k−1/2
∞∑

n=0

ie−(2n+1)πir2/c

(2n + 1)2k+2

+(−1)r2(−β)−k−1/2
∞∑

n=0

ie(2n+1)πir2/c

(2n + 1)2k+2
if k ≥ 0,

and if r2/c is an integer, then

I3(k) :=

{
0 if k < 0,
(−1)r2/c+1π

2(2k+1)!
(22k+2 − 1)((−β)k+1/2 + αk+1/2)ζ(−2k − 1) if k ≥ 0.
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Proof. Let z = πi/α, h = (1/2, 1/2) and m = 2k + 1 in (2.1). All
details of the proof are similar to those in the proof of Theorem 2.1
except for m = −1. For 0 < x < 1, ζ(s, x) has the expansion at s = 1,

ζ(s, x) =
1

s− 1
−Ψ0(x) + · · · .(2.19)

Then, using (2.4) and (2.5), we obtain that for x /∈ Z,

lim
s→1

(
ψ

(
1
2
, x, s

)
+ e

(
±s

2

)
ψ

(
−1

2
,−x, s

))

= (−1)[x]

(
Ψ0({x})−Ψ0(

1
2
{x})

+Ψ0(1− {x})−Ψ0(
1
2
(1− {x}))− 2 log 2

)

and for x ∈ Z,

lim
s→1

(
ψ

(
1
2
, x, s

)
+ e

(
±s

2

)
ψ

(
−1

2
,−x, s

))
= 0.

Corollary 2.4. For any integer k and for any positive even integer
c,

α−k−1/2
∞∑

n=0

(−1)n

(2n + 1)2k+2(e(α−πi)(2n+1)/c + 1)

= (−1)c/2(−β)−k−1/2
∞∑

n=0

(−1)n

(2n + 1)2k+2(e(β+πi)(2n+1)/c + 1)

− (−1)c/2

8
π

c∑
j=1

(−1)j+[ j
c
+ 1

2 ]
2k+1∑

`=0

E`

(
j
c

)
Ē2k+1−`

(
j
c

+ 1
2

)

`!(2k + 1− `)!
(−πi)`αk−`+1/2 + I3(k),

where

I3(k) :=





(−1)k+1

22k+2 (βk+1/2 + (−1)c/2(−α)k+1/2)Γ(−2k − 1)

·
∞∑

n=0

(−1)n

(2n + 1)−2k−1
if k < −1,

1
4

(
α1/2 − (−1)c/2(−β)1/2

)
if k = −1,

1
2
(α−k−1/2 − (−1)c/2(−β)−k−1/2)

∞∑
n=0

(−1)n

(2n + 1)2k+2
if k ≥ 0.

Proof. Put r2/c = 1/2 in Theorem 2.3.

For c = 2, Corollary 2.4 yields Corollary 4.19 in [3].
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Theorem 2.5. Let α, β > 0 with αβ = π2. Then, for any integer k,
r2 and for any positive odd integer c,

α−k−1/2
∞∑

n=0

2 sin ((2n + 1)πr2/c)

(2n + 1)2k+2(e(α−πi)(2n+1)/c + 1)

= (−1)r22−2k−2(−β)−k−1/2
∞∑

n=0

2 sin (2πnr2/c)

n2k+2(e(β+πi)2n/c + 1)

+
(−1)r2

2
π

c∑
j=1

(−1)j
2k+2∑

`=0

E`

(
j
c

)
B̄2k+2−`

(
j+r2

c

)

`!(2k + 2− `)!
(−πi)`αk−`+1/2 + I4(k),

where if r2/c is not an integer, then

I4(k) :=





(−1)[r2/c]+k+1 1
2
βk+1/2Γ(−2k − 1)Z+(−2k − 1, { r2

c
})

+(−1)r2+k+1 1
2
(−α)k+1/2Z−(−2k − 1, { r2

c
}) if k < −1,

(−1)[r2/c]

2
β−1/2

(
Ψ0(

{
r2
c

}
) + Ψ0(1−

{
r2
c

}
)

−Ψ0(
1
2

{
r2
c

}
)−Ψ0(

1
2
− 1

2

{
r2
c

}
)− 2 log 2

)

+ (−1)r2

2
(−α)−1/2(π cot(π{ r2

c
}) + πi) if k = −1,

α−k−1/2
∞∑

n=0

ie−(2n+1)πir2/c

(2n + 1)2k+2

+(−1)r22−2k−2β−k−1/2
∞∑

n=1

ie2πir2n/c

n2k+2
if k ≥ 0,

and if r2/c is an integer, then

I4(k) :=





0 if k < −1,
(−1)r2

2
β1/2 if k = −1,

(−1)r2/cπ
2(2k+1)!

((1− 22k+2)(−β)k+1/2 + αk+1/2)ζ(−2k − 1) if k ≥ 0.

Proof. Let z = πi/α, h = (1/2, 1/2) and m = 2k + 1 in (2.1). The
proof is similar to the proof of Theorem 2.2 besides m = −1. Employing
(2.19) and the formula

Ψ0(1− x)−Ψ0(x) = π cot(πx),

it follows that for x /∈ Z,

lim
s→1

(
ψ (0, x, s) + e

(
−s

2

)
ψ (0,−x, s)

)
= π cot(π{x}) + πi

and for x ∈ Z,

lim
s→1

(
ψ (0, x, s) + e

(
−s

2

)
ψ (0,−x, s)

)
= πi.

If r2/c is not an integer, then Theorem 2.2 and Theorem 2.5 have the
same flavor as Theorem 5.11 and Theorem 5.12, respectively, in [3].
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We obtain more theorems from (2.1) by putting different values in
h = (h1, h2). The proofs of these theorems can be done by the similar
methods using equations in the proofs of above theorems. Now we state
our results without details of proof.

Theorem 2.6. Let α, β > 0 with αβ = π2. Then, for any integer k,
r2 and for any positive even integer c,

α−k
∞∑

n=1

2 cos (2πnr2/c)
n2k+1(e(α−πi)2n/c + 1)

= (−1)r2(−β)−k
∞∑

n=1

2 cos (2πnr2/c)
n2k+1(e(β+πi)2n/c + 1)

−(−1)r222k+1
c∑

j=1

(−1)j
2k+2∑

`=0

B`

(
j
c

)
B̄2k+2−`

(
j+r2

c

)

`!(2k + 2− `)!
(−πi)`αk−`+1 + I5(k),

where if r2/c is not an integer, then

I5(k) :=





22k((−β)k − (−1)r2αk)Γ(−2k)Z+(−2k, { r2
c
}) if k < 0,

− log
(
1− e−2πir2/c

)
+ (−1)r2 log

(
1− e2πir2/c

)
if k = 0,

α−k
∞∑

n=1

e−2πinr2/c

n2k+1
+ (−1)r2+1(−β)−k

∞∑
n=1

e2πinr2/c

n2k+1
if k > 0,

and if r2/c is an integer, then

I5(k) :=

{
(α−k − (−β)−k)ζ(2k + 1) if k 6= 0,
1
2

log β
α
− 1

2
πi if k = 0.

Proof. Let z = πi/α, h = (1/2, 0) and m = 2k in (2.1).

For c odd, if we put h = (1/2, 0), m = 2k and z = πi/α in (2.1), then
the complex conjugate of the identity in Theorem 2.2 follows.

Corollary 2.7. For any integer k and for any positive even integer
c,

α−k
∞∑

n=1

(−1)n

n2k+1(e(α−πi)2n/c + 1)

= (−1)c/2(−β)−k
∞∑

n=1

(−1)n

n2k+1(e(β+πi)2n/c + 1)

−(−1)c/222k
c∑

j=1

(−1)j
2k+2∑

`=0

B`

(
j
c

)
B̄2k+2−`

(
j
c

+ 1
2

)

`!(2k + 2− `)!
(−πi)`αk−`+1 + I5(k),

where

I5(k) :=

{
(2−2k−1 − 2−1)(α−k − (−1)r2(−β)−k)ζ(2k + 1) if k 6= 0,

((−1)r2 − 1) log
√

2 if k = 0.
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Proof. Put r2/c = 1/2 in Theorem 2.6.

Theorem 2.8. Let α, β > 0 with αβ = π2. Then, for any integer k,
r2 and for any positive even integer c,

α−k−1/2
∞∑

n=1

2i sin (2πnr2/c)

n2k+2(e(α−πi)2n/c + 1)

= (−1)r2(−β)−k−1/2
∞∑

n=1

2i sin (2πnr2/c)

n2k+2(e(β+πi)2n/c + 1)

+(−1)r222k+2
c∑

j=1

(−1)j
2k+3∑

`=0

B`

(
j
c

)
B̄2k+3−`

(
j+r2

c

)

`!(2k + 3− `)!
(−πi)`αk−`+3/2 + I6(k),

where if r2/c is not an integer, then

I6(k) :=





22k+1((−1)r2αk+1/2 − (−β)k+1/2)Γ(−2k − 1)Z−(−2k − 1, { r2
c
}) if k < −1,

1
2
α1/2(i cot(π{ r2

c
}) + 1) + (−1)r2+1 1

2
(−β)1/2(i cot(π{ r2

c
})− 1) if k = −1,

−α−k−1/2
∞∑

n=1

e−2πinr2/c

n2k+2
+ (−1)r2+1(−β)−k−1/2

∞∑
n=1

e2πinr2/c

n2k+2
if k ≥ 0,

and if r2/c is an integer, then

I6(k) :=





0 if k < −1,
1
2
(α1/2 + (−β)1/2) if k = −1,

−(α−k−1/2 + (−β)−k−1/2)ζ(2k + 2) if k ≥ 0.

Proof. Let z = πi/α, h = (1/2, 0) and m = 2k + 1 in (2.1).

For c odd, if h = (1/2, 0), m = 2k+1 and z = πi/α in (2.1), then we have
the complex conjugate of the equation in Theorem 2.5. Theorem 2.6 and
Theorem 2.8 should be compared with Theorem 3.20 and Theorem 3.21
in [5], respectively.

Theorem 2.9. Let α, β > 0 with αβ = π2. Then, for any integer k,
r2 and for any positive integer c,

α−k
∞∑

n=0

2 cos ((2n + 1)πr2/c)

(2n + 1)2k+1(e(α−πi)(2n+1)/c − 1)

= (−β)−k
∞∑

n=0

2 cos ((2n + 1)πr2/c)

(2n + 1)2k+1(e(β+πi)(2n+1)/c − 1)

−1

4

c∑
j=1

(−1)[
j+r2

c
]

2k∑

`=0

E`

(
j
c

)
Ē2k−`

(
j+r2

c

)

`!(2k − `)!
(−πi)`+1αk−` + I7(k),

where if r2/c is not an integer, then

I7(k) :=





(−1)[r2/c]

2
(αk − (−β)k)Γ(−2k)Z−(−2k, { r2

c
}) if k < 0,

(−1)[r2/c]

2
πi if k = 0,

−α−k
∞∑

n=0

e−(2n+1)πir2/c

(2n + 1)2k+1
+ (−β)−k

∞∑
n=0

e(2n+1)πir2/c

(2n + 1)2k+1
if k > 0,
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and if r2/c is an integer, then

I7(k) :=

{
(−1)r2/c(2−2k−1 − 1)(α−k − (−β)−k)ζ(2k + 1) if k 6= 0,
(−1)r2/c+1

4

(
log β

α
− πi

)
if k = 0.

Proof. Let z = πi/α, h = (0, 1/2) and m = 2k in (2.1).

If c = 1, then Theorem 2.9 yields Theorem 4.7 in [3]. If c = 2 in Theorem
2.9, then we also obtain Theorem 4.7 in [3] and Proposition 4.5 in [2].

Theorem 2.10. Let α, β > 0 with αβ = π2. Then, for any integer
k, r2 and for any positive integer c,

α−k−1/2
∞∑

n=0

2i sin ((2n + 1)πr2/c)

(2n + 1)2k+2(e(α−πi)(2n+1)/c − 1)

= (−β)−k−1/2
∞∑

n=0

2i sin ((2n + 1)πr2/c)

(2n + 1)2k+2(e(β+πi)(2n+1)/c − 1)

−1

4

c∑
j=1

(−1)[
j+r2

c
]
2k+1∑

`=0

E`

(
j
c

)
Ē2k+1−`

(
j+r2

c

)

`!(2k + 1− `)!
(−πi)`+1αk−`+1/2 + I8(k),

where if r2/c is not an integer, then

I8(k) :=





(−1)[r2/c]

2
((−β)k+1/2 − αk+1/2)Γ(−2k − 1)Z+(−2k − 1, { r2

c
}) if k < −1,

(−1)[r2/c]

2
((−β)−1/2 − α−1/2)

(
Ψ0(

{
r2
c

}
) + Ψ0(1−

{
r2
c

}
)

−Ψ0(
1
2

{
r2
c

}
)−Ψ0(

1
2
− 1

2

{
r2
c

}
)− 2 log 2

)
if k = −1,

α−k−1/2
∞∑

n=0

e−(2n+1)πir2/c

(2n + 1)2k+2
+ (−β)−k−1/2

∞∑
n=0

e(2n+1)πir2/c

(2n + 1)2k+2
if k ≥ 0,

and if r2/c is an integer, then

I8(k) :=

{
0 if k < 0,

(−1)r2/c(1− 2−2k−2)(α−k−1/2 + (−β)−k−1/2)ζ(2k + 2) if k ≥ 0.

Proof. Let z = πi/α, h = (0, 1/2) and m = 2k + 1 in (2.1).

In case of c even, Theorem 2.9 and Theorem 2.10 should be compared
with Theorem 2.1 and Theorem 2.3, respectively.

Corollary 2.11. For any integer k and for any positive integer c,

α−k−1/2
∞∑

n=0

(−1)n

(2n + 1)2k+2(e(α−πi)(2n+1)/c − 1)

= (−β)−k− 1
2

∞∑
n=0

(−1)n

(2n + 1)2k+2(e(β+πi)(2n+1)/c − 1)

+
π

8

c∑
j=1

(−1)[
j
c
+ 1

2 ]
2k+1∑

`=0

E`

(
j
c

)
Ē2k+1−`

(
j
c

+ 1
2

)

`!(2k + 1− `)!
(−πi)`αk−`+1/2 + I8(k),
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where

I8(k) :=





−2−2k−2i((−β)k+1/2 − αk+1/2)Γ(−2k − 1)

∞∑
n=0

(−1)n

(2n + 1)−2k−1
if k < −1,

1
4
((−β)1/2 − α1/2) if k = −1,

1
2

(
(−β)−k−1/2 − α−k−1/2

) ∞∑
n=0

(−1)n

(2n + 1)2k+2
if k ≥ 0.

Proof. Put r2/c = 1/2 in Theorem 2.10.

If c = 1 in Corollary 2.11, then Corollary 4.19 in [3] is obtained.
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